Share this post on:

Within the therapy of invasive bladder cancer: long-term final results in 1054 individuals. J. Clin. Oncol. 19, 666?75 (2001). 3. Shah, J. B., McConkey, D. J. Dinney, C. P. New methods in muscle-invasive bladder cancer: on the road to customized medicine. Clin. Cancer Res. 17, 2608?612 (2011). 4. Kalluri, R. Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420?428 (2009). 5. Lin, C. W. et al. Daxx inhibits hypoxia-induced lung cancer cell metastasis by suppressing the HIF-1alpha/HDAC1/Slug axis. Nat. Commun. 7, 13867 (2016). six. Qian, Y. et al. aPKC-iota/P-Sp1/Snail signaling induces epithelial-mesenchymal transition and immunosuppression in cholangiocarcinoma. Hepatology 66, 1165-1182 (2017). 7. Vuoriluoto, K. et al Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30, 1436?448 (2011). eight. Barrallo-Gimeno, A. Nieto, M. A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Improvement 132, 3151?161 (2005). 9. Olmeda, D. et al. SNAI1 is necessary for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Res. 67, 11721?1731 (2007).Xu et al. Cell Death and Illness (2018)9:Web page 14 of10. Braicu, C. et al. Clinical and pathological implications of miRNA in bladder cancer. Int. J. Nanomed. 10, 791?00 (2015). 11. Hu, S. et al. Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional 5-Hydroxyflavone medchemexpress repressor of interferon signaling. Cell 139, 610?22 (2009). 12. Cheng, J. C., Chang, H. M. Leung, P. C. Egr-1 mediates epidermal development factor-induced downregulation of E-cadherin expression through Slug in human ovarian cancer cells. Oncogene 32, 1041?049 (2013). 13. Lewis, B. P., Burge, C. B. Bartel, D. P. Conserved seed pairing, usually flanked by adenosines, indicates that a huge number of human genes are microRNA targets. Cell 120, 15?0 (2005). 14. Guancial, E. A., Bellmunt, J., Yeh, S., Rosenberg, J. E. Berman, D. M. The evolving understanding of microRNA in bladder cancer. Urol. Oncol. 32, 31?1 (2014). 15. Xu, X. et al. MicroRNA-409-3p inhibits migration and invasion of bladder cancer cells by means of targeting c-Met. Mol. Cell. 36, 62?eight (2013). 16. Li, S. et al. MicroRNA-490-5p inhibits proliferation of bladder cancer by targeting c-Fos. Biochem. Biophys. Res. Commun. 441, 976?81 (2013). 17. Liang, Z. et al. MicroRNA-576-3p inhibits proliferation in bladder cancer cells by targeting cyclin D1. Mol. Cell. 38, 130?37 (2015). 18. Xu, X. et al. c-Met and CREB1 are involved in miR-433-mediated inhibition on the epithelial-mesenchymal transition in bladder cancer by regulating Akt/ GSK-3beta/Snail signaling. Cell Death Dis. 7, e2088 (2016). 19. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. Tuschl, T. Identification of novel genes coding for tiny expressed RNAs. Science 294, 853?58 (2001). 20. Jiang, X. et al. miR-22 has a potent anti-tumour function with Antileukinate Inhibitor therapeutic potential in acute myeloid leukaemia. Nat. Commun. 7, 11452 (2016). 21. Zuo, Q. F. et al. MicroRNA-22 inhibits tumor growth and metastasis in gastric cancer by straight targeting MMP14 and Snail. Cell Death Dis. 6, e2000 (2015). 22. Budd, W. T. et al. Dual action of miR-125b as a tumor suppressor and OncomiR-22 promotes prostate cancer tumorigenesis. PLoS. A single. 10, e142373 (2015). 23. Song, S. J. et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis by way of TET-family-dependent chromatin.

Share this post on:

Author: GTPase atpase